欢迎您访问长沙鹏翔电子科技有限公司官方网站

技术与应用

PCIE高速声发射仪/千兆网络声发射仪

技术与应用

压电效应和压电式声发射传感器

发布日期:2013-08-07 10:53    浏览次数:

固体介质中传播的声发射信号含有声发射源的特征信息,要利用这些信息反映材料特性或缺陷发展状态,就要在固体表面接收这种声发射信号。声发射信号是瞬变随机波信号,垂直位移极小约为10-7~10-14米,频率分布在次声到超声频率范围(几赫兹到几十兆赫兹)。这就要求声发射检测仪器具有高响应速度、高灵敏度、高增益、宽动态范围、强阻塞恢复能力和频率检测窗口可以选择等性能。在实际的声发射检测过程中,检测到的信号往往是经过多次反射和波形变换的复杂信号。声发射信号由传感器接收并转换成电信号,传感器根据特定的校准方法,给出频率—灵敏度曲线,据此可根据检测目的和环境选择不同类型、不同频率和灵敏度的传感器。

传感器是利用某些物质(如半导体、陶瓷、压电晶体、强磁性体和超导体等)的物理特性随着外界待测量作用而发生变化的原理制成的。它利用了诸多的效应(包括物理效应、化学效应和生物效应)和物理现象,如利用材料的压阻、湿敏、热敏、光敏、磁敏和气敏等效应,把应变、湿度、温度、位移、磁场、煤气等被测量变换成电量。而新原理、新效应的发现和利用,新型物性材料的开发和应用,使物性型传感器得到很大的发展。因此了解传感器所基于的各种效应,对其理解、开发和应用都是非常必要的。在声发射检测过程中,通常使用的是压电效应。

压电效应是可逆的,它是正压电效应和逆压电效应的总称。习惯上把正压电效应称为压电效应。
当某些电介质沿一定方向受外力作用而变形时,在其一定的两个表面上产生正负异号电荷,当外力去掉后,又恢复到不带电的状态,这种现象就被称为正压电效应。电介质受力所产生的电荷与外力的大小成正比,比例系数为压电常数,它与机械形变方向有关,对一定材料一定方向则为常量。电介质受力产生电荷的极性取决于变形的形式(压缩或伸长)。
具有明显压电效应的材料称为压电材料,常用的有石英晶体、铌酸锂LiNbO3、镓酸锂LiGaO3、锗酸铋Bi12GeO20等单晶和经极化处理后的多晶体如钛酸钡压电陶瓷、锆钛酸铅系列压电陶瓷PZT。新型压电材料有高分子压电薄膜(如聚偏二氟乙烯PVDF)和压电半导体(如ZnO、CdS)。单晶材料的压电效应是由于这些单晶受外应力时其内部经格结构变形,使原来宏观表现的电中性状态被破坏而产生电极化。经极化(一定温度下加以强电场)处理后的压电陶瓷、高分子压电薄膜的压电性是电畴、电极偶子取向极化的结果。
利用正压电效应制成的压电式传感器,将压力、振动、加速度等非电量转换成电量,从而进行精密测量。
当在电介质的极化方向施加电场,某些电介质在一定的方向上将产生机械变形或机械应力,当外电场撤去后,变形或应力也随之消失,这种物理现象称为逆压电效应。利用逆压电效应可制成超声波发生器、压电扬声器、频率高度稳定的晶体振荡器(如每昼夜误差<2×10-5s的石英钟、表)等。逆压电效应可用于声发射信号产生。
由于压电转换元件具有自发电和可逆两种重要性能,加上它体积小、重量轻、结构简单、工作可靠、固有频率高、灵敏度和信噪比高等优点,因此,压电式传感器的应用获得迅速的发展。利用正压电效应研制的压电电源、煤气炉和汽车发动机的自动点火装置等多种电压发生器;在测试技术中,压电转换元件是一种典型的力敏元件,能测量最终可变换成力的那些物理量,例如压力、加速度、机械冲击和振动等,因此在声学、力学、医学和宇航等广阔领域中都可见到压电式传感器的应用。更有重要意义的是:根据生物压电学的结果认识到生物都具有压电性,人的各种感觉器官实际上是生物压电传感器。如根据正压电效应治疗骨折,可以加速痊愈;用逆压电效应,对骨头通电具有矫正畸形骨等功能。
压电转换元件的主要缺点是无静态输出,要求有很高的电输出阻抗,需用低电容的低噪声电缆,很多压电材料的工作温度只有250℃左右。